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1. Introduction

Among Eulerian interface tracking and capturing techniques, the volume-of-fluid (VoF) method [1,8,10,11,13–17] is a
popular choice, especially on structured meshes, because it can conserve volume exactly. Current VoF methods reconstruct
interfaces from known volume fractions with a piecewise linear (PLIC) approximation in each interface cell, that requires an
estimate of an interface normal. Such normals are also used to impose surface tension at interfaces via the CSF method [2,6],
and can be used to calculate curvature.

There are various ways of calculating this normal; among others, by calculating the gradient of the discrete volume frac-
tions; by minimizing the difference between actual volume fractions in a stencil of cells and those obtained by extending a
linear interface segment into those cells; and by integrating fluid volume in one direction and then calculating the slope of
these fluid ‘‘heights”. Prototypical examples of these are the Parker–Youngs [11,17] normal, the LVIRA [12] method, and the
ELVIRA [12] and height function (HF) [3,4,7,10] methods, respectively.

The common means of evaluating such methods is via norms based on what can be thought of as a ‘‘reconstruction error”,
that quantifies the area difference between an exact curve and a piecewise linear reconstruction, per unit length of the exact
interface [12]:
L1 ¼ 1
l

Z Z
jf ðx; yÞ � ~f ðx; yÞjdxdy ð1Þ
f ðx; yÞ and ~f ðx; yÞ are the characteristic function and the reconstructed volume fraction function, and l is the length of the
exact interface. Put another way, L1 is the average normal distance between an exact interface and a piecewise linear recon-
struction. By this measure, Parker–Youngs normals are first-order accurate, and (E) LVIRA and HF normals are second-order
accurate. But it is important to note that based on this norm, any reconstruction will be at least first-order accurate, simply
by virtue of the fact that the reconstruction occurs only in interface cells, which decrease in size as the mesh is refined. As a
result, even when the PLIC reconstruction is based on normals that are randomly assigned rather than calculated, Eq. (1)
deems this a first-order method. This norm is also limited to second-order accuracy regardless of the accuracy of an interface
normal, simply because the reconstruction is done via a piecewise linear segment. To achieve higher-order accuracy in this
norm, one would need to reconstruct with a higher-order technique (e.g. quadratic).

In this note we present an improved 2D HF technique that we designate HF2. Like the regular HF method, HF2 is second-
order when evaluated via Eq. (1). But we also introduce a new error, that allows us to evaluate these methods in another way,
. All rights reserved.
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by comparing the calculated normal to an ‘‘exact” one, that we define as the average normal evaluated along an exact inter-
face segment. In this way, we can then describe any method via two norms: the first based on the position of the interface
(Eq. (1)), and the second based on the accuracy of the normal. By these measures, as we will show, the Parker–Youngs meth-
od is first-order accurate when evaluating position and zero-order when evaluating the normal; the (E)LVIRA and HF meth-
ods are second-order for position and first-order for normals; and only the HF2 method is second-order accurate based on
both norms.

2. Height functions (HF) revisited

In a two-dimensional PLIC method, each interface is reconstructed with a line segment indicated by a normal,~n ¼ ðnx;nyÞ
and a constant k:
nxxþ nyy ¼ k ð2Þ
We confine ourselves to a study of y� hðxÞ ¼ 0. When y ¼ hðxÞ is continuous and differentiable on an arbitrary interval
½xL; xR�, a normal ~n at any point inside the interval is:
~n ¼ �h0ðxÞ̂ıþ ĵ ð3Þ
and h0ðxÞ is the first derivative of the function hðxÞ. Eq. (3) suggests that a good estimate of h0ðxÞ will lead to a reasonable
approximation for the normal vector ~n.

According to the mean value theorem illustrated in Fig. 1, for any interval ½xL; xR�, we can find a line which is tangent to the
curve hðxÞ with a slope of:
m ¼ � nx

ny
¼ h0ðxcÞ ¼

hðxRÞ � hðxLÞ
xR � xL

ð4Þ
where xc 2 ½xL; xR�; note that xc is not necessarily the midpoint of the interval.
Now consider a discretized domain. One can obtain a normal, ~nnum, for the cell ði; jÞ based on the mean value theorem

using the 3� 7 stencil shown in Fig. 2:
~nnum ¼ ðhðxi�1Þ � hðxiþ1ÞÞ~iþ ðxiþ1 � xi�1Þ~j ð5Þ
where:
hðxi0 Þ ¼
Xjþ3

j0¼j�3

fi0 ;j0Ai0 ;j0 for i0 ¼ i� 1; i; iþ 1 ð6Þ
Ai;j and fi;j are the area and the volume fraction of cell ði; jÞ. This is the so-called height function (HF) technique [3,4,7,10].

3. A new error norm

Before we proceed to improve the HF method, we now define a new error norm by introducing an average normal ~nave

that is calculated by evaluating the average value of h0ðxÞ along a curve segment:
~nave ¼ �h0ave
~iþ~j ð7aÞ

h0ave ¼
R x¼xR

x¼xL
h0ðxÞdlR x¼xR

x¼xL
dl

ð7bÞ
Fig. 1. Graphical representation of the mean value theorem. xc 2 ½xL; xR�, although xc is not necessarily the center point of the interval.



Fig. 2. Height functions in two configurations. In (b), the original HF method yields the same normal for cells ði; jÞ and ði; j� 1Þ, while the HF2 method treats
the interfaces in each of these cells separately.

P.A. Ferdowsi, M. Bussmann / Journal of Computational Physics 227 (2008) 9293–9302 9295
where dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh0ðxÞÞ2

q
dx. Unfortunately, for some functions, an analytical calculation of the integrals in Eq. (7b) is impos-

sible. In such cases, one can use a numerical integration (e.g. trapezoidal) technique. It is trivial to show that this definition of
an average normal yields an exact value for a line, and for a circle, ~nave is the normal at the midpoint of an arc segment. For
other curves, it should be noted that~nave is not a pointwise quantity, but rather an average calculated along a curve segment.

To evaluate a normal for the purpose of reconstruction, we are interested only in the orientation of the normal, and not its
magnitude, and so we calculate the angle between ~nave, that we consider a good estimate of an ‘‘exact” normal, and ~nnum.
Thus, we define the following norms:
L1 ¼ 1
l

P
li cos�1ðn̂ave � n̂numÞ

L2 ¼ 1
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðli cos�1ðn̂ave � n̂numÞÞ2

q
L1 ¼ maxðcos�1ðn̂ave � n̂numÞÞ

ð8Þ
where l and li are the total length of the exact interface and the length of a segment of the exact interface in a cell, and the
sums are over all interface cells in a domain. Note that n̂ave and n̂num are the unit normals in the direction of ~nave and ~nnum,
respectively.

4. Second-order accurate normals from height functions (HF2)

Returning to HFs, it is clear that n̂num approaches n̂ave with mesh refinement, because h0ðxcÞ ! h0ave when xL ! xR. That is,
the integrals in Eq. (7b) become an evaluation of h0ðxÞ at the point xc. Since a central difference scheme is used in this method,
then according to Eq. (5), one would naively expect that HFs are second-order accurate based on the new norm. Yet as we



Fig. 3. Parameters for the HF2 technique. C0OB is the exact interface and CB0 is the line tangent to the interface at the intersection point O.
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will show, this method is only first-order accurate on fine grids. Why? As shown in Fig. 2(a), when an interface in the central
column crosses just one cell, Eq. (5) yields a reasonable value for an average normal in the central cell ði; jÞ. However, when
an interface crosses two cells in the central column (e.g. see Fig. 2(b)), the traditional height function technique assigns the
same normal to both cells (i; j) and (i; j� 1), and this value deviates significantly from the exact normal in either cell. Now we
introduce the HF2 technique, that ameliorates this shortcoming at little expense.

Consider Figs. 2(b) and 3: we are looking for the most accurate normal in a cell ði; jÞ, which is reasonably close to the mid-
point of the interface in the interval xi�1

2
< x < xo, where xo is the x component of the point at which the interface intersects

the lower face of the cell ði; jÞ. The ordinary HF technique yields a normal near the mid-point of the interface between x ¼ xi�1
2

and x ¼ xiþ1
2
. The HF2 method modifies the ordinary HF technique to obtain a normal near the mid-point of the interface con-

fined by the two faces at x ¼ xi�1
2

and y ¼ yj�1
2
, as illustrated in Fig. 3.

In what follows, we derive a methodology for the configuration of Fig. 3. We begin by using the Taylor series to obtain
improved slopes at xt and xb:
mt ¼ mi � Dxt
dmi

dx
þ OðDx2

t Þ ð9aÞ

mb ¼ mi þ Dxb
dmi

dx
þ OðDx2

bÞ ð9bÞ

mi ¼
hiþ1 � hi�1

xiþ1 � xi�1
ð9cÞ
The subscripts ‘t’ and ‘b’ refer to the top and bottom interface segments, with respect to the direction of ny. Eqs. (9) yield
slopes for the top and bottom interfaces that are greater and smaller than the slope obtained from the HF technique. In other
words, as one might expect, the HF slope is bounded by the two slopes of the HF2 technique.

Now we focus on the term dmi=dx in Eq. (9). For a non-uniform grid, by means of a Taylor series expansion around xi one
can obtain the second derivative of the function h by elimination of its first derivative:
dmi

dx
¼ d2h

dx2 ¼
1

Dxi

1
Dxiþ1

2

hiþ1 �
1

Dxiþ1
2

þ 1
Dxi�1

2

 !
hi þ

1
Dxi�1

2

hi�1

 !
ð10Þ
where Dxiþ1
2
¼ xiþ1 � xi, Dxi�1

2
¼ xi � xi�1 and Dxi ¼ 1

2 ðDxiþ1
2
þ Dxi�1

2
Þ. It is evident that dmi=dx is zero for a linear interface. That

is, HF2 and HF are the same and exact when an interface is linear. For Eqs. (9) and (10) everything is known except Dxt and
Dxb; these values can be obtained from geometrical considerations. As shown in Fig. 3, the interface can be approximated by
a line tangent to the interface at point xo, although as we only know the volume fractions, the exact location of xo is unknown.
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But consider that triangles OAC and OA0B0 are similar, and that with mesh refinement, the areas OBC and OB0C0 go to zero;
then:
OAB! OAC

OA0B0 ! OA0C 0
With these assumptions, we approximate:
wt

wb
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðOACÞ
AðOA0B0Þ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fi;jAi;j

ð1� fi;j�1ÞAi;j�1

s
¼ b ð11Þ
where wb ¼ xiþ1
2
� xo, wt ¼ xo � xi�1

2
, and A denotes area. Therefore:
wt ¼
b

bþ 1
Dxi ð12aÞ

wb ¼
1

bþ 1
Dxi ð12bÞ
From Fig. 3 it is clear that:
Dxt ¼
wt

2
þwb �

Dxi

2
ð13aÞ

Dxb ¼
wb

2
þwt �

Dxi

2
ð13bÞ
Now we obtain Dxt and Dxb based on the volume fractions and the cell widths by substituting Eqs. (12) into Eqs. (13):
Dxt ¼
1

2ðbþ 1ÞDxi ð14aÞ

Dxb ¼
b

2ðbþ 1ÞDxi ð14bÞ
This completes the derivation of normals for the configuration of Fig. 3.
More generally, for either horizontal or vertical stencils, the methodology can be summarized as follows. We first esti-

mate the sign of the normal components with a 3� 3 stencil:
ax ¼ sgn
Pjþ1

j0¼j�1

ðfiþ1;j0 � fi�1;j0 Þ
 !

ay ¼ sgn
Piþ1

i0¼i�1
ðfi0 ;jþ1 � fi0 ;j�1Þ

 ! ð15Þ
where sgnðÞ is the sign function. The normal to the interface ðnx;nyÞ can then be calculated as follows:
ni;j
x ¼

ax hiþ1 � hi�1 � axayb
1þb

€hi

��� ��� if 0 < fi;j; f i;j�1 < 1

ax hiþ1 � hi�1 þ axay

1þb
€hi

��� ��� if 0 < fi;j; f i;jþ1 < 1

8><
>:

€hi ¼ Dxi
Dx

iþ1
2

hiþ1 � Dxi
Dx

iþ1
2

þ Dxi
Dx

i�1
2

� �
hi þ Dxi

Dx
i�1

2

hi�1

ni;j
y ¼ 2ayDxi

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ð1�ayÞ�fi;j

1
2ð1þayÞ�fi;j�1

��� ��� Ai;j

Ai;j�1

r
if 0 < fi;j; f i;j�1 < 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2ð1�ayÞ�fi;jþ1

1
2ð1þayÞ�fi;j

��� ��� Ai;jþ1
Ai;j

r
if 0 < fi;j; f i;jþ1 < 1

8>>><
>>>:

ð16Þ
Note that when b approaches zero or infinity (as happens when an interface crosses three adjacent cells), the HF2 normal
approaches that of the HF normal.

5. Results

In this section we evaluate normals obtained by the ELVIRA (EL), Parker–Youngs (PY), height function (HF), and improved
height function (HF2) methods. We reconstruct a circle (constant curvature and monotonic variation of normal direction), a
cosine hyperbolic function (monotonic smooth variation of curvature and normal direction), a cosine wave (periodic varia-
tion of curvature and normal direction) and a Gaussian wave (abrupt variation of curvature and normal direction) in a 2D
square domain of unit length. The four curves are:



Table 1
Old and new error norms for a circle of unit radius on a uniform square grid

Cells L1 L2 L1 L1

(a) PY
2 3.667E�02 3.250E�02 5.500E�02 6.241E�03
4 7.165E�03 3.855E�03 9.614E�03 1.658E�03
8 1.106E�02 5.408E�03 8.561E�02 6.303E�04
16 1.365E�02 4.427E�03 6.358E�02 2.206E�04
32 1.531E�02 3.363E�03 7.022E�02 1.207E�04
64 1.538E�02 2.400E�03 6.288E�02 5.744E�05
128 1.568E�02 1.685E�03 6.028E�02 2.766E�05
256 1.578E�02 1.190E�03 6.103E�02 1.357E�05

(b) EL
2 5.280E�02 4.129E�02 6.811E�02 6.326E�03
4 2.419E�02 1.381E�02 5.356E�02 2.191E�03
8 7.020E�03 2.767E�03 5.559E�02 5.346E�04
16 7.741E�03 2.400E�03 2.493E�02 1.595E�04
32 2.206E�03 5.657E�04 1.494E�02 3.713E�05
64 1.435E�03 2.604E�04 9.708E�03 9.757E�06
128 6.450E�04 8.684E�05 5.884E�03 2.465E�06
256 3.287E�04 3.119E�05 3.354E�03 6.143E�07

(c) HF
2 1.497E�01 1.368E�01 3.129E�01 6.326E�03
4 4.311E�02 3.024E�02 1.318E�01 3.158E�03
8 1.126E�02 5.061E�03 7.846E�02 5.842E�04
16 7.614E�03 2.304E�03 2.864E�02 1.557E�04
32 2.506E�03 5.702E�04 1.861E�02 3.695E�05
64 1.394E�03 2.290E�04 9.274E�03 9.383E�06
128 6.330E�04 7.260E�05 5.493E�03 2.347E�06
256 3.274E�04 2.673E�05 2.708E�03 5.904E�07

(d) HF2
2 1.131E�01 9.394E�02 2.032E�01 7.646E�03
4 2.755E�02 1.569E�02 7.203E�02 2.308E�03
8 5.131E�03 2.363E�03 1.624E�02 5.228E�04
16 1.172E�03 3.499E�04 4.045E�03 1.061E�04
32 2.940E�04 6.933E�05 9.698E�04 3.094E�05
64 7.256E�05 1.131E�05 2.278E�04 7.404E�06
128 1.824E�05 2.204E�06 6.120E�05 1.931E�06
256 4.559E�06 3.847E�07 1.513E�05 4.769E�07

Fig. 4. Comparison of the L1 error norm for normals obtained by various methods for a circle. Oð1Þ and Oð2Þ show orders of accuracy equal to 1 and 2,
respectively.
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Circle : y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

ð17aÞ
Cosine hyperbolic : y ¼ coshðxþ 1Þ � 2 ð17bÞ

Cosine wave : y ¼ 1� cosðpxÞ
2

ð17cÞ

Gaussian wave : y ¼ 1
10
þ 3

4
exp½�25ðx� 1Þ2� ð17dÞ
For the circle, we evaluate both L1 and norms based on the new error, while for the others we evaluate the order of accuracy
of methods only via the new norms.

Regarding the implementation, note that we extended the domain by three ghost cells to accurately evaluate the various
methods to the domain boundaries. The constant of the linear interface was calculated based on the direct method presented
in [5,15]. The volume fractions were obtained to machine precision by a recursive mesh refinement method. Finally, when
the variation of volume fractions in any column of the stencil was not monotonic, we used the strategies in [9] to improve
the results for both the HF and HF2 methods.
Fig. 5. Comparison of L error norms for normals obtained by various methods for a circle.



Fig. 6. Distribution of error ðlogðcos�1ðn̂ave � n̂numÞÞÞ and reconstructed interfaces for a circle on 32� 32 grid, with normals obtained by various methods.
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We now turn to the results. All error norms are shown in Table 1(a)–(d), for a circle resolved by various uniform grids.
Fig. 4 illustrates L1: we see that the PY method is first-order, while the others are second-order accurate. As was explained
previously, it is not possible to evaluate an accuracy more than two via this norm definition when the reconstruction is
piecewise linear. At best, based on this norm, it appears that HF2 normals are only slightly more accurate than the others.

L1, L2, and L1 norms are shown in Fig. 5(a)–(c), and clearly show that for well-resolved circles, HF2 is the only second
order accurate method, based on the new norms. The distribution of normals error on the circle, and the reconstructed inter-
faces obtained from all methods, are portrayed in Fig. 6. The error distributions show that when an interface crosses three
cells in a row, then the HF2 and HF normals are identical and more accurate than the others. But when an interface is skewed
and only crosses two cells of the height function stencil, then HF2 is much more accurate than HF. Fig. 6 also shows that the
HF2 error is a minimum when the interface is aligned with the mesh, and increases gradually to a maximum when the inter-
face direction is diagonal to the mesh. Conversely, when using HF, ELVIRA, and PY, the maximum error occurs at various loca-
tions or along a few directions. Error distributions of other curves are similar to those of the circle when a curve is well-
resolved; when interface curvature is large the maximum HF2 error occurs at or near the cell with the largest curvature.

Fig. 5(a)–(c) also clearly indicate that at very low resolutions the PY normals are as accurate as those of any of the meth-
ods, and that only with refinement do the other methods outperform. This is noteworthy because in practice VoF methods



Fig. 7. Comparison of the L1 error norm for normals obtained by various methods.
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are often applied to simulate complex phenomena involving dramatic interface deformation, when interfaces (or parts there-
of) will be inevitably underresolved.

The L1 error norms for the other curves are shown in Fig. 7(a)–(c). These figures also show that HF2 yields the most accu-
rate normal among all methods, especially when the mesh is refined and the interface is well-resolved. A bit more compli-
cated than a circle, the cosine hyperbolic function (Eq. (17b) and Fig. 7(a)) features curvature and normal direction (the angle
measured counterclockwise from a horizontal axis passing an arbitrary point on the curve) that vary slightly but monoton-
ically between ½15

ffiffi
1
5

q
; 1

5

ffiffi
3
5

q
� and ½� tan�1

ffiffiffi
8
p

;� tan�1
ffiffiffi
3
p
�, respectively. Due to the small curvature that prevails over the do-

main, the interface is well-resolved everywhere. Except for the PY method, the smaller the curvature, the more accurate
the normal.

The cosine wave (Eq. (17c) and Fig. 7(b)) is another step more complicated than the cosine hyperbolic function; the cur-
vature varies between ½0;p2=2� and the normal direction changes periodically. Again, HF2 maintains second-order accuracy
with refinement, while the others do not.

Finally, we consider a Gaussian wave (Eq. (17d) and Fig. 7(c)). Here, curvature and normal direction vary abruptly and
dramatically, and so the interface is not well-resolved everywhere. The maximum error occurs at x ¼ 1 where the curvature
is a maximum (j ¼ 7:5). Although the errors in this case are larger for all methods, HF2 is still one order of accuracy more
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precise than the others. Also, Fig. 7(c) clearly indicates that on a coarse grid (less than 16� 16), all methods behave similarly.
But with refinement, HF2 reveals its second-order behavior, while other methods converge more slowly or not at all.

6. Conclusion

We have introduced an improved 2D height function (HF2) technique for calculating interface normals from volume frac-
tions on structured meshes. A new definition for an ‘‘exact” averaged normal and for an error norm for normals have also
been proposed, to compare the accuracy of different methods; this norm complements the well-known L1 norm that eval-
uates the position of a reconstructed interface relative to an exact one. The HF2 method is shown to be second-order accurate
when evaluating both interface position and the normal. Finally, since the method relies solely on the known volume frac-
tions and mesh geometry, we envision an extension of the methodology to 3D.
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